Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
arxiv; 2023.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2311.11512v1

ABSTRACT

The outbreak of COVID-19 pandemic make people wear masks more frequently than ever. Current general face recognition system suffers from serious performance degradation,when encountering occluded scenes. The potential reason is that face features are corrupted by occlusions on key facial regions. To tackle this problem, previous works either extract identity-related embeddings on feature level by additional mask prediction, or restore the occluded facial part by generative models. However, the former lacks visual results for model interpretation, while the latter suffers from artifacts which may affect downstream recognition. Therefore, this paper proposes a Multi-task gEnerative mask dEcoupling face Recognition (MEER) network to jointly handle these two tasks, which can learn occlusionirrelevant and identity-related representation while achieving unmasked face synthesis. We first present a novel mask decoupling module to disentangle mask and identity information, which makes the network obtain purer identity features from visible facial components. Then, an unmasked face is restored by a joint-training strategy, which will be further used to refine the recognition network with an id-preserving loss. Experiments on masked face recognition under realistic and synthetic occlusions benchmarks demonstrate that the MEER can outperform the state-ofthe-art methods.


Subject(s)
COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.01.438020

ABSTRACT

While SARS-CoV-2-specific T cells have been characterized to play essential roles in host immune protection in COVID-19 patients, few researches focus on the functional validation of T cell epitopes and development of vaccines inducing specific T cell responses. In this study, 120 CD8 T cell epitopes from E, M, N, S and RdRp proteins of SARS-CoV-2 were validated by on-silicon prediction, DC-peptide-PBL costimulation with PBMCs of healthy donors and HLA-A molecule competitive binding experiments. Among them, 110, 15, 6, 14 and 12 epitopes were highly homologous with SARS-CoV, OC43, NL63, HKU1, and 229E, respectively. Thirty-one epitopes restricted by HLA-A2 molecule were used to generate peptide cocktail vaccines in combination with Poly(I:C), R848 or polylactic-co-glycolic acid nanoparticles, which elicited robust specific CD8 T cell responses in wild-type and HLA-A2/DR1 transgenic mice. Seven of the 31 epitopes were found to be cross-presented by HLA-A2 and H-2K/Db molecules. These data have provided a library of SARS-CoV-2 CD8 T cell epitopes which restricted by a series of high-frequency HLA-A allotypes and covered broad population in Asia, and initially confirmed the feasibility of human MHC class I molecule-restricted SARS-CoV2 epitope peptide cocktail vaccines, thus will facilitate the development of T cell epitope vaccines and specific cellular function detection kits.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
4.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-52323.v3

ABSTRACT

Background: The pandemic of the coronavirus disease 2019 (COVID-19) has caused substantial disruptions to health services in the low and middle-income countries with a high burden of other diseases, such as malaria in sub-Saharan Africa. The aim of this study is to assess the impact of COVID-19 pandemic on malaria transmission potential in malaria-endemic countries in Africa. Methods: : We present a data-driven method to quantify the extent to which the COVID-19 pandemic, as well as various non-pharmaceutical interventions (NPIs), could lead to the change of malaria transmission potential in 2020. First, we adopt a particle Markov Chain Monte Carlo method to estimate epidemiological parameters in each country by fitting the time series of the cumulative number of reported COVID-19 cases. Then, we simulate the epidemic dynamics of COVID-19 under two groups of NPIs: (i) contact restriction and social distancing, and (ii) early identification and isolation of cases. Based on the simulated epidemic curves, we quantify the impact of COVID-19 epidemic and NPIs on the distribution of insecticide-treated nets (ITNs). Finally, by treating the total number of ITNs available in each country in 2020, we evaluate the negative effects of COVID-19 pandemic on malaria transmission potential based on the notion of vectorial capacity. Results: : In this paper, we conduct case studies in four malaria-endemic countries, Ethiopia, Nigeria, Tanzania, and Zambia, in Africa. The epidemiological parameters (i.e., the basic reproduction number R_0 and the duration of infection D_I) of COVID-19 in each country are estimated as follows: Ethiopia (R_0=1.57, D_I=5.32), Nigeria (R_0=2.18, D_I=6.58), Tanzania (R_0=2.47, D_I=6.01), and Zambia (R_0=2.12, D_I=6.96). Based on the estimated epidemiological parameters, the epidemic curves simulated under various NPIs indicated that the earlier the interventions are implemented, the better the epidemic is controlled. Moreover, the effect of combined NPIs is better than contact restriction and social distancing only. By treating the total number of ITNs available in each country in 2020 as a baseline, our results show that even with stringent NPIs, malaria transmission potential will remain higher than expected in the second half of 2020. Conclusions: : By quantifying the impact of various NPI response to the COVID-19 pandemic on malaria transmission potential, this study provides a way to jointly address the syndemic between COVID-19 and malaria in malaria-endemic countries in Africa. The results suggest that the early intervention of COVID-19 can effectively reduce the scale of the epidemic and mitigate its impact on malaria transmission potential. Keywords : COVID-19 pandemic; Non-pharmaceutical interventions; Particle Markov chain Monte Carlo; Insecticide-treated nets; Vectorial capacity; Malaria transmission potential


Subject(s)
Coronavirus Infections , Neurofibromatosis 1 , Hepatitis D , COVID-19 , Malaria
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.30.20044099

ABSTRACT

COVID-19 has become a pandemic. The influence of meteorological factors on the transmission and spread of COVID-19 if of interest. This study sought to examine the associations of daily average temperature (AT) and relative humidity (ARH) with the daily count of COVID-19 cases in 30 Chinese provinces (in Hubei from December 1, 2019 to February 11, 2020 and in other provinces from January 20, 2020 to Februarys 11, 2020). A Generalized Additive Model (GAM) was fitted to quantify the province-specific associations between meteorological variables and the daily cases of COVID-19 during the study periods. In the model, the 14-day exponential moving averages (EMAs) of AT and ARH, and their interaction were included with time trend and health-seeking behavior adjusted. Their spatial distributions were visualized. AT and ARH showed significantly negative associations with COVID-19 with a significant interaction between them (0.04, 95% confidence interval: 0.004-0.07) in Hubei. Every 1{degrees}C increase in the AT led to a decrease in the daily confirmed cases by 36% to 57% when ARH was in the range from 67% to 85.5%. Every 1% increase in ARH led to a decrease in the daily confirmed cases by 11% to 22% when AT was in the range from 5.04{degrees}C to 8.2{degrees}C. However, these associations were not consistent throughout Mainland China.


Subject(s)
COVID-19 , Agnosia
SELECTION OF CITATIONS
SEARCH DETAIL